\qquad
\qquad

Rules for Dividing Integers

Julia said that " $-36 \div 9=4$ ". Jonah disagreed with her and explained his reasoning this way:

1. To undo the division problem $(-36 \div 9=4)$, Julia would have to multiply 9.4 and get -36 .

That doesn't work.
2. So based on that, $-36 \div 9=-4$

Julia asked: "How about the answer to $36 \div-9$?"
3. What do you think the answer to Julia's question should be? \qquad

$$
\begin{array}{|ll}
\hline \text { In general, to divide integers, follow the same rules for multiplying integers. } \\
\begin{array}{ll}
(+) \div(+)=+ & \text { (}) \div(-)=- \\
(-) \div(-)=+ & (-) \div(+)=-
\end{array} \\
\hline
\end{array}
$$

4. Lila is $\$ 20$ in debt. Her three friends offered to help her by distributing her debt evenly among the four of them. Write Lila's debt as an integer, then write and solve a problem to show the integer that represents each person's debt now.
5. How many groups of " -2 " are in " -34 "? Write and solve a problem.
\qquad 7. $-51 \div(-17)=$ \qquad 8. $160 \div(-20)=$ \qquad
6. $(-15) \div(-15)=$ \qquad
7. $(-1) \div(-1) \div(-1)=$ \qquad
8. $-100 \div 25 \div(-4)=$ \qquad
9. $20 \div(-2) \div(-2)=$ \qquad 13. $(-18) \div(-6) \cdot(-2)=$ \qquad
10. $(-81) \div(-9) \cdot 3=$ \qquad 15. $70 \div 2 \div(-1)=$ \qquad
