Name \qquad
\qquad

Classification and Naming of Angles

1) Name each angle below in four ways. Then classify it as acute, right, obtuse, or straight.

b.

c.

a. \qquad
b. \qquad
c. \qquad

What are the measurements of each of the angles in the picture at the right?
2. $m \angle C O A$ \qquad and $m \angle B O D$ \qquad
$\mathrm{m} \angle \mathrm{AOD}$ \qquad and $\mathrm{m} \angle C O B$ \qquad
What do you notice about the measures of each pair of angles? \qquad

Opposite angles formed by the intersection of two lines are called
\qquad . Their measures are always congruent.
3. Now use what we learned about vertical angles, and find the value of x in this figure.

\qquad

$$
x=
$$

4. $\angle C O A$ and $\angle A O D$ are called adjacent angles. Adjacent angles are angles that have the same vertex, share a common side and don't overlap. Name three other pairs of adjacent angles from the picture above. \qquad
5. If two angles add up to 180°, we say they "Supplement" each other. Supplement comes from Latin supplere, to complete or "supply" what is needed. When the sum of two angles add up to 180°, they are called \qquad . If the measure of an angle is 103°, we say the measure of its supplement is \qquad .

These two angles $\left(140^{\circ}\right.$ and $\left.40^{\circ}\right)$ are Supplementary Angles, because the sum of their measures is 180°. Notice that together they make a straiaht angle.

But the angles don't have to be adjacent to be supplementary. These two are supplementary because $60^{\circ}+120^{\circ}=180^{\circ}$

6. What is the measure of angles 1 and 2 from the figure at the right?

$$
m \angle 1
$$

\qquad $\mathrm{m} \angle 2$ \qquad
What do you notice about the sum of their measures?

What is the measure of $\angle D E F$ and $\angle A B C$ from the figure at the right?

$$
\mathrm{m} \angle \mathrm{DEF}
$$

\qquad $\mathrm{m} \angle A B C$ \qquad
What do you notice about the sum of their measures?

The two angles don't have to be adjacent to be complementary. Look at
 the figure with $\angle D E F$ and $\angle C B A$. These two angles are complementary because the sum of their measures is 90°.

If the sum of the measures of two angles is 90°, we say they "Complement" each other. Complementary comes from Latin completum, meaning "completed"... because the right angle is thought of as being a complete (full) angle. When the sum of the measures of two angles is 90°, we say the two angles are \qquad . If an angle measures 36°, we say the measure of its complement is \qquad .
7. In the figure at the right, the two angles are complementary, find the value of x.

$$
x=
$$

8. In the figure below, the angles shown are supplementary.

Find the value of x. What is the measure of the angle labeled $3 x$?

\qquad $3 x=$ \qquad
9. If the sum of the measures of two angles is 90°, the angles are supplementary.

True or False

10. Using what we have learned about vertical angles, find the value of x in the figure at the right. Now using what you know about supplementary angles find the measures of the other angles.
